Development and validation of a prediction model for 30-day mortality in hospitalised patients with COVID-19: the COVID-19 SEIMC score.

Like Comment
To develop and validate a prediction model of mortality in patients with COVID-19 attending hospital emergency rooms.Multivariable prognostic prediction model.127 Spanish hospitals.Derivation (DC) and external validation (VC) cohorts were obtained from multicentre and single-centre databases, including 4035 and 2126 patients with confirmed COVID-19, respectively.Prognostic variables were identified using multivariable logistic regression.30-day mortality.Patients' characteristics in the DC and VC were median age 70 and 61 years, male sex 61.0% and 47.9%, median time from onset of symptoms to admission 5 and 8 days, and 30-day mortality 26.6% and 15.5%, respectively. Age, low age-adjusted saturation of oxygen, neutrophil-to-lymphocyte ratio, estimated glomerular filtration rate by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, dyspnoea and sex were the strongest predictors of mortality. Calibration and discrimination were satisfactory with an area under the receiver operating characteristic curve with a 95% CI for prediction of 30-day mortality of 0.822 (0.806-0.837) in the DC and 0.845 (0.819-0.870) in the VC. A simplified score system ranging from 0 to 30 to predict 30-day mortality was also developed. The risk was considered to be low with 0-2 points (0%-2.1%), moderate with 3-5 (4.7%-6.3%), high with 6-8 (10.6%-19.5%) and very high with 9-30 (27.7%-100%).A simple prediction score, based on readily available clinical and laboratory data, provides a useful tool to predict 30-day mortality probability with a high degree of accuracy among hospitalised patients with COVID-19.


View the full article @ Thorax


Get PDF with LibKey
Authors: Juan Berenguer, Alberto M Borobia, Pablo Ryan, Jesús Rodríguez-Baño, Jose M Bellón, Inmaculada Jarrín, Jordi Carratalà, Jerónimo Pachón, Antonio J Carcas, María Yllescas, José R Arribas, COVID-19@Spain and COVID@HULP Study Groups

ClinOwl

The wider, wiser view for healthcare professionals. ClinOwl signposts the latest clinical content from over 100 leading medical journals.
6577 Contributions
2 Followers
0 Following