Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of infant acute lymphoblastic leukemia.

Survival of infants with KMT2A-rearranged (R) acute lymphoblastic leukemia (ALL) remains dismal despite intensive chemotherapy. We observed constitutive phosphorylation of spleen tyrosine kinase (SYK) and associated signaling proteins in infant ALL patient-derived xenograft (PDX) model specimens and hypothesized that the SYK inhibitor entospletinib would inhibit signaling and cell growth in vitro and leukemia proliferation in vivo. We further predicted that combined entospletinib and chemotherapy could augment anti-leukemia effects. Basal kinase signaling activation and HOXA9/MEIS1 expression differed among KMT2A-R (KMT2A-AFF1 [n=4], KMT2A-MLLT3 [n=1], KMT2A-MLLT1 [n=4]) and non-KMT2A-R [n=3] ALL specimens and stratified by genetic subgroup. Incubation of KMT2A-R ALL cells in vitro with entospletinib inhibited methylcellulose colony formation and SYK pathway signaling in a dose-dependent manner. In vivo inhibition of leukemia proliferation with entospletinib monotherapy was observed in RAS-wild-type KMT2A-AFF1, KMT2A-MLLT3, and KMT2A-MLLT1 ALL PDX models with enhanced activity in combination with vincristine chemotherapy in several models. Surprisingly, entospletinib did not decrease leukemia burden in two KMT2A-AFF1 PDX models with NRAS/ or KRAS mutations, suggesting potential RAS-mediated resistance to SYK inhibition. As hypothesized, superior inhibition of ALL proliferation was observed in KMT2A-AFF1 PDX models treated with entospletinib and the MEK inhibitor selumetinib versus vehicle or inhibitor monotherapies (p<0.05). In summary, constitutive activation of SYK and associated signaling occurs in KMT2A-R ALL with in vitro and in vivo sensitivity to entospletinib. Combination therapy with vincristine or selumetinib further enhanced treatment effects of SYK inhibition. Clinical study of entospletinib and chemotherapy or other kinase inhibitors in patients with KMT2A-R leukemias may be warranted.

Click here to read the full article @ Haematologica